3.1.10 \(\int (a+a \cos (c+d x)) \sec ^4(c+d x) \, dx\) [10]

Optimal. Leaf size=63 \[ \frac {a \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac {a \tan (c+d x)}{d}+\frac {a \sec (c+d x) \tan (c+d x)}{2 d}+\frac {a \tan ^3(c+d x)}{3 d} \]

[Out]

1/2*a*arctanh(sin(d*x+c))/d+a*tan(d*x+c)/d+1/2*a*sec(d*x+c)*tan(d*x+c)/d+1/3*a*tan(d*x+c)^3/d

________________________________________________________________________________________

Rubi [A]
time = 0.03, antiderivative size = 63, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.210, Rules used = {2827, 3852, 3853, 3855} \begin {gather*} \frac {a \tan ^3(c+d x)}{3 d}+\frac {a \tan (c+d x)}{d}+\frac {a \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac {a \tan (c+d x) \sec (c+d x)}{2 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + a*Cos[c + d*x])*Sec[c + d*x]^4,x]

[Out]

(a*ArcTanh[Sin[c + d*x]])/(2*d) + (a*Tan[c + d*x])/d + (a*Sec[c + d*x]*Tan[c + d*x])/(2*d) + (a*Tan[c + d*x]^3
)/(3*d)

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3852

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Dist[-d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 3853

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Csc[c + d*x])^(n - 1)/(d*(n
- 1))), x] + Dist[b^2*((n - 2)/(n - 1)), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n,
 1] && IntegerQ[2*n]

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin {align*} \int (a+a \cos (c+d x)) \sec ^4(c+d x) \, dx &=a \int \sec ^3(c+d x) \, dx+a \int \sec ^4(c+d x) \, dx\\ &=\frac {a \sec (c+d x) \tan (c+d x)}{2 d}+\frac {1}{2} a \int \sec (c+d x) \, dx-\frac {a \text {Subst}\left (\int \left (1+x^2\right ) \, dx,x,-\tan (c+d x)\right )}{d}\\ &=\frac {a \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac {a \tan (c+d x)}{d}+\frac {a \sec (c+d x) \tan (c+d x)}{2 d}+\frac {a \tan ^3(c+d x)}{3 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.16, size = 60, normalized size = 0.95 \begin {gather*} \frac {a \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac {a \sec (c+d x) \tan (c+d x)}{2 d}+\frac {a \left (\tan (c+d x)+\frac {1}{3} \tan ^3(c+d x)\right )}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Cos[c + d*x])*Sec[c + d*x]^4,x]

[Out]

(a*ArcTanh[Sin[c + d*x]])/(2*d) + (a*Sec[c + d*x]*Tan[c + d*x])/(2*d) + (a*(Tan[c + d*x] + Tan[c + d*x]^3/3))/
d

________________________________________________________________________________________

Maple [A]
time = 0.19, size = 60, normalized size = 0.95

method result size
derivativedivides \(\frac {a \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )-a \left (-\frac {2}{3}-\frac {\left (\sec ^{2}\left (d x +c \right )\right )}{3}\right ) \tan \left (d x +c \right )}{d}\) \(60\)
default \(\frac {a \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )-a \left (-\frac {2}{3}-\frac {\left (\sec ^{2}\left (d x +c \right )\right )}{3}\right ) \tan \left (d x +c \right )}{d}\) \(60\)
risch \(-\frac {i a \left (3 \,{\mathrm e}^{5 i \left (d x +c \right )}-12 \,{\mathrm e}^{2 i \left (d x +c \right )}-3 \,{\mathrm e}^{i \left (d x +c \right )}-4\right )}{3 d \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{3}}+\frac {a \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{2 d}-\frac {a \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{2 d}\) \(95\)
norman \(\frac {-\frac {3 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{d}-\frac {5 a \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d}+\frac {a \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d}-\frac {a \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{3}}-\frac {a \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{2 d}+\frac {a \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{2 d}\) \(136\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*cos(d*x+c))*sec(d*x+c)^4,x,method=_RETURNVERBOSE)

[Out]

1/d*(a*(1/2*sec(d*x+c)*tan(d*x+c)+1/2*ln(sec(d*x+c)+tan(d*x+c)))-a*(-2/3-1/3*sec(d*x+c)^2)*tan(d*x+c))

________________________________________________________________________________________

Maxima [A]
time = 0.29, size = 70, normalized size = 1.11 \begin {gather*} \frac {4 \, {\left (\tan \left (d x + c\right )^{3} + 3 \, \tan \left (d x + c\right )\right )} a - 3 \, a {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )}}{12 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))*sec(d*x+c)^4,x, algorithm="maxima")

[Out]

1/12*(4*(tan(d*x + c)^3 + 3*tan(d*x + c))*a - 3*a*(2*sin(d*x + c)/(sin(d*x + c)^2 - 1) - log(sin(d*x + c) + 1)
 + log(sin(d*x + c) - 1)))/d

________________________________________________________________________________________

Fricas [A]
time = 0.40, size = 88, normalized size = 1.40 \begin {gather*} \frac {3 \, a \cos \left (d x + c\right )^{3} \log \left (\sin \left (d x + c\right ) + 1\right ) - 3 \, a \cos \left (d x + c\right )^{3} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (4 \, a \cos \left (d x + c\right )^{2} + 3 \, a \cos \left (d x + c\right ) + 2 \, a\right )} \sin \left (d x + c\right )}{12 \, d \cos \left (d x + c\right )^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))*sec(d*x+c)^4,x, algorithm="fricas")

[Out]

1/12*(3*a*cos(d*x + c)^3*log(sin(d*x + c) + 1) - 3*a*cos(d*x + c)^3*log(-sin(d*x + c) + 1) + 2*(4*a*cos(d*x +
c)^2 + 3*a*cos(d*x + c) + 2*a)*sin(d*x + c))/(d*cos(d*x + c)^3)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} a \left (\int \cos {\left (c + d x \right )} \sec ^{4}{\left (c + d x \right )}\, dx + \int \sec ^{4}{\left (c + d x \right )}\, dx\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))*sec(d*x+c)**4,x)

[Out]

a*(Integral(cos(c + d*x)*sec(c + d*x)**4, x) + Integral(sec(c + d*x)**4, x))

________________________________________________________________________________________

Giac [A]
time = 0.47, size = 96, normalized size = 1.52 \begin {gather*} \frac {3 \, a \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right ) - 3 \, a \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) - \frac {2 \, {\left (3 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 4 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 9 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{3}}}{6 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))*sec(d*x+c)^4,x, algorithm="giac")

[Out]

1/6*(3*a*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - 3*a*log(abs(tan(1/2*d*x + 1/2*c) - 1)) - 2*(3*a*tan(1/2*d*x + 1/
2*c)^5 - 4*a*tan(1/2*d*x + 1/2*c)^3 + 9*a*tan(1/2*d*x + 1/2*c))/(tan(1/2*d*x + 1/2*c)^2 - 1)^3)/d

________________________________________________________________________________________

Mupad [B]
time = 2.04, size = 102, normalized size = 1.62 \begin {gather*} \frac {a\,\mathrm {atanh}\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{d}-\frac {a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5-\frac {4\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{3}+3\,a\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{d\,\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6-3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2-1\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a*cos(c + d*x))/cos(c + d*x)^4,x)

[Out]

(a*atanh(tan(c/2 + (d*x)/2)))/d - (3*a*tan(c/2 + (d*x)/2) - (4*a*tan(c/2 + (d*x)/2)^3)/3 + a*tan(c/2 + (d*x)/2
)^5)/(d*(3*tan(c/2 + (d*x)/2)^2 - 3*tan(c/2 + (d*x)/2)^4 + tan(c/2 + (d*x)/2)^6 - 1))

________________________________________________________________________________________